Combining Global features for Content-based Retrieval of Medical Images
نویسندگان
چکیده
A combination of several classifiers using global features for the content description of medical images is proposed. Beside well known texture histogram features, downscaled representations of the original images are used, which preserve spatial information and utilize distance measures which are robust regarding common variations in radiation dose, translation, and local deformation. These features were evaluated for the annotation task and the interactive query task in ImageCLEF 2005 without using additional textual information or query refinement mechanisms. For the annotation task, a categorization rate of 86.7% was obtained, which ranks second among all submissions. When applied in the interactive query task, the image content descriptors yielded a mean average precision (MAP) of 0.0751, which is rank 14 of 28 submitted runs. As the image deformation model is not fit for interactive retrieval tasks, two mechanisms are evaluated regarding the trade-off between loss of accuracy and speed increase: hierarchical filtering and prototype selection.
منابع مشابه
A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملImage retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملContent Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملA Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval
Nowadays, with huge progress in digital imaging, new image processing methods are needed to manage digital images stored on disks. Image retrieval has been one of the most challengeable fields in digital image processing which means searching in a big database in order to represent similar images to the query image. Although many efficient researches have been performed for this topic so far, t...
متن کاملIntegrating an automatic classification method into the medical image retrieval process
Combining low-level features that represent the content of medical images with high level features that are saved with images would allow the expansion of text queries submitted to Content Based Image Retrieval (CBIR) systems. Expanding these text queries would allow CBIR systems to respond more effectively to specific queries when retrieving medical images. We hypothesized that adding an autom...
متن کامل